Insular Hyperactivity in Anxiety Prone Individuals – A New Signature of Anxiety?

Martin P Paulus, M.D.
Department Of Psychiatry
University Of California San Diego
La Jolla CA 92097-0603

Outline

• Why the insula?
• Insula: risk-taking and decision-making
• Insula and Anxiety Proneness
• Insula and Anticipation
• So what?

Insular Cortex: At the Computational Cross-Road between Cognition and Emotion

Afferents and Efferents

• Topographically specific afferents and efferents:
 - Cortex (parietal, temporal, orbitofrontal, ACC),
 - Thalamus (MD)
 - Striatum (both dorsal and ventral including accumbens)
 - Limbic system (amygdala, entorhinal cortex)

Computational Connections

• Insular-striatal connections provide the “gate”
 - Filtering body-relevant
 - Emotionally salient
 - Motivationally important
• signals to executive control areas:
 - ACC
 - mPFC
Neuroimaging Evidence:

- Insular Cortex:
 - Pain
 - Posterior – topographic organization
 - Emotion (Drive)
 - Anterior - agranular
 - Executive Functioning
 - Anterior - dysgranular

Insula – The Circuit

- Body state relevant valuation, motivation, and action selection.

Computational Role of the Insular Cortex

- Regulatory role:
 - Computation of homeostatic demands
 - Anticipation of homeostatic perturbation
 - Signaling initiation of homeostatic-maintenance actions

Interoception

- “Sense of the physiological condition of the entire body” (Craig 2002)
- Monitoring sensations for integrity of internal body state:
 - Temperature, pain, itch, tickle, sensual touch, muscular and visceral sensations, vasomotor flush, hunger, thirst, air hunger, self awareness and others
- Allocating attention, evaluating context, and planning actions
Anatomy Of Interoception
- Homeostatic neural system
- Signals from small-diameter primary afferents
- Creates an internal representation of the entire body
- Pathway:
 - Midbrain reticular nuclei
 - Ventromedial and ventroposterior thalamus
 - Interoceptive (posterior) insular cortex
 - Integrated in the anterior insular cortex of the dominant (right) hemisphere (Craig 2002)

Error Processing, Learning And Prediction
- Evolutionary advantage of cortical circuitry:
 - Top-down modulation of ascending sensorimotor information
 - Ability to predict future states
- Learning associations between stimuli and future pleasant or aversive outcomes
- Discrepancy between:
 - The actual occurrence of reward and
 - The predicted occurrence of reward — ‘reward prediction error’ (Schultz et al. 1997)

Characteristics Of The Interoceptive System
- Interoceptive sensations:
 - Intense affective and motivational components
 - Evaluation is highly dependent on the homeostatic state
- Interoceptive state:
 - Integrated in the anterior insula
 - Relayed to the anterior cingulate cortex (control and action network)

Anterior Insula - Prediction Of Aversive States
- Anterior insular cortex:
 - Receives:
 - Information about stimuli associated with aversive body states
 - Integrates:
 - Current body state with prediction of future body state
 - Sends out:
 - Signal to brain areas that are critical for the allocation of attention and the execution of actions
 - Signal of an impending aversive body state

Disorders of Interoception
- Anxiety:
 - Anxious Thoughts
 - Possible infringement of real or imagined body integrity
 - Body Sensations
 - Hyperarousal
 - *Increased Aversive Prediction Signal*
- Depression:
 - Enhanced Affective Bias

Insular Cortex & Risk-taking and Decision-Making
Risky Gains Decision-making

- Decide between:
 - A sure gain of 20 points
 - A risky gain of 40 or 80 points
 - Probability of punishment for 40 or 80 trials are such that there is no advantage of selecting the risky versus the safe option.

Less risky after punishment

- Subjects select the safe option 50% of the time.
- Subjects are less likely to select a risky option after punishment.
- Punishment leads to risk-aversion.

Insula response to risk

- Right Insula
 - Increased activation during risk-taking responses
 - Increased activation when response is punished
- Risk-taking decision-making:
 - Right anterior insula may process risks associated with a response

- Insula sensitivity to punishment predicts neuroticism
 - Subjects with a stronger insula activation during punishment had higher neuroticism and harm avoidance personality scores.
 - Insula sensitivity to punishment predicts a personality trait.

Insula Activation to Punishment and Temperament

Decision-making Processes

- Use time as the main independent variable:
 - Processes that are serialized in time:
 - Input
 - Assessment of Options
 - Process / Computation
 - Option – Value Association
 - Output
 - Selection of Action
 - Feedback
 - Learning, Option – Value Adjustment

Interpretation

- Right anterior insula (BA 13) activation:
 - larger when subjects selected a “risky” response versus selecting a “safe” response
 - larger when individuals were punished.
 - related to the probability of selecting a “safe” response
 - associated with neuroticism and harm avoidance
- Insula: critical role in the processing of risk during decision-making
- Greater insula response – less risk-taking behavior.
High / Low – Card Task

- Decide whether the next card is higher or lower
- Distinction between
 - Action Selection
 - Outcome Evaluation

Interpretation

- Bilateral anterior insula (BA 13) activation:
 - Selective involvement during action selection
 - Larger activation when more neurotic
 - No relationship to uncertainty of outcome
- Insula: signaling action (or action plans) in a decision-making situation
- Neuroticism:
 - Demand for greater brain processing resources to resolve appropriate action selection plans.

Action-Selection – Anterior Insula

- Bilateral anterior insula:
 - Selection of an action > experience of an outcome.
 - Activation correlated with neuroticism

Insular Cortex Hyperactivity in Anxiety Prone Individuals

Emotion Face Assessment Task

- Based on Hariri et al., 2002
- Decide:
 - Which bottom face matches the emotion expressed by the top face
 - 5-second trials
- Presentation of angry, fearful, and happy target faces (Matsumoto & Ekman, 1998)

Anxiety Proneness

- Why Anxiety Prone?
 - Non-treatment seeking
 - Not treated
 - Subthreshold cases
 - High risk for future anxiety disorders
- Subjects recruited from San Diego State University
- Subjects comprised of two groups
 - Anxiety Prone (AP)
 - Non Anxiety Prone (NAP)

Paulus MP et al., Arch Gen Psychiatry 2005
Methods: Subjects

- Young 18-24 year old college students

<table>
<thead>
<tr>
<th>Variables</th>
<th>Normative Trait Mean</th>
<th>High Trait Anxiety Mean</th>
<th>t-value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>18.53</td>
<td>18.76</td>
<td>-0.72</td>
<td>0.48</td>
</tr>
<tr>
<td>Education</td>
<td>13.35</td>
<td>13.59</td>
<td>-0.87</td>
<td>0.39</td>
</tr>
<tr>
<td>Anxiety</td>
<td>40.41</td>
<td>54.53</td>
<td>-8.58</td>
<td>0.00</td>
</tr>
<tr>
<td>State</td>
<td>36.00</td>
<td>43.57</td>
<td>-1.96</td>
<td>0.06</td>
</tr>
<tr>
<td>Social</td>
<td>19.71</td>
<td>32.50</td>
<td>-3.53</td>
<td>0.00</td>
</tr>
<tr>
<td>STAI-TOT</td>
<td>17.92</td>
<td>22.82</td>
<td>-2.27</td>
<td>0.03</td>
</tr>
<tr>
<td>Physical</td>
<td>8.94</td>
<td>14.91</td>
<td>-2.70</td>
<td>0.01</td>
</tr>
<tr>
<td>Psychological</td>
<td>1.71</td>
<td>6.25</td>
<td>-3.39</td>
<td>0.00</td>
</tr>
<tr>
<td>Social</td>
<td>4.71</td>
<td>5.81</td>
<td>-1.67</td>
<td>0.11</td>
</tr>
<tr>
<td>Total</td>
<td>15.35</td>
<td>26.98</td>
<td>-3.21</td>
<td>0.00</td>
</tr>
<tr>
<td>ASI</td>
<td>7.15</td>
<td>9.68</td>
<td>-3.36</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Results: fMRI - Amygdala

- HTA: Similar activation in medial
- Increased activation in dorsal amygdala

Results: fMRI - visual cortex

- HTA: No significant activation differences in fusiform gyrus or visual cortex.

Results: fMRI - Insula

- HTA:
 - Greater activation in bilateral anterior insula
 - Effect regardless of face type
- Significant correlation between anterior insula and anxiety sensitivity (ASI)

Altered Interoceptive Processing During Anticipation In Anxiety Prone Individuals

Emotion processing

- Anticipation
- Appraisal
- Reaction
- Regulation

Modified after: Neurobiology of Emotion Perception 1: The Neural Basis of Normal Emotion Perception

Van E. Nolte, Werner C. Denck, Ernst L. Koch and Richard Lane
Stimulus Anticipation Task

- Continuous performance task:
 - Blue circle LEFT button
 - Blue square RIGHT button
 - Tones: 250 msec long 500 Hz tone, 0.5 Hz
- Anticipate positive image
 - Blue (circle or square)
 - 250 Hz tone
- Anticipate negative image
 - Red (circle or square)
 - 1000 Hz tone

Task Performance

- No significant differences between AP and AN on:
 - Response Latency
 - Response Accuracy

Anticipation Effect

- Bilateral Insula activation during anticipation of negative images.

Anticipation: Group Difference

- AP individuals show greater activation in:
 - R anterior insula during anticipation of negative images
 - vACC during anticipation of all images

Insula – so what

- Utility of examining insular functioning in anxiety
 - Processing Target:
 • Risk-taking
 • Decision-making
 • Anticipation
 - Biomarker Target
 • Processing Differences in Anxiety disorders
 • Severity marker
 • Response to interventions

Insula – the future

- Insular function in Anxiety
 - Intervention Target (DBS?)
 - Identifying individuals at risk
 - Monitoring long-term outcome
 - Developmental Aspects
 - Neural systems approach
 • Processes (risk-taking, decision-making)
 • Computational Models
 • Molecular mechanisms (gene-fMRI)
See link: http://koso.ucsd.edu/~martin/index.html