Methamphetamine’s Effect on the Brain and Behavior

Martin P Paulus
University of California San Diego
San Diego Veterans Affairs Health Care System
San Diego, CA 92116

Outline

1. Review of brain and behavioral dysfunction in methamphetamine
 1. Neural substrates
 1. Anterior cingulate
 2. Orbitofrontal cortex
 3. Insula
 2. Behaviors
 1. Inhibition
 2. Reward processing
 3. Decision-making
2. Prediction of relapse in methamphetamine dependent individuals

What Does Dopamine Do?

- Signal for:
 - Stimuli that predict reward
 - Probability of reward
 - Reward magnitude (expected - observed)
Anterior Cingulate

- Action–outcome associations:
 - Guiding decisions about whether the expected value of a reward means that it is worth acting (Rushworth, 2004)
- Monitoring and evaluating the outcomes of actions
 - Conflict
 - Errors (Botvinick, 2004)

Orbitofrontal Cortex

- Represents the affective value of reinforcers as they relate to learning and state-dependency (Kringelbach 2005)
- During choice OFC neurons encode the value of offered and chosen options. (Padoa-Schioppa & Assad, 2006)

Insular Cortex

- Interoception: the sense of the physiological condition of the entire body (Craig 2002)
- Interoceptive state processing in the anterior insula is relayed to the anterior cingulate cortex, the OFC, and striatum

Inhibition

- Inhibition is the process by which the execution of a thought, action, or emotion is overridden or reversed.
- Stop-signal reaction time (SSRT) - latency to inhibit an initiated motor response: longer for MA abusers than for control groups (Monterosso et al 2005).
- MA show greater interference on computerized single-trial version of the Stroop test despite intact priming (Salo et al 2002).
- MA individuals make more errors on trials that required inhibition of distracting information (Salo et al 2005).
Reward Processing

- Amphetamine administration activates:
 - Medial orbitofrontal cortex.
 - Anterior cingulate cortex.
 - And the ventral striatum (Vollm et al 2004a; Vollm et al 2004b).
- MA users show dopamine transporter reduction in the caudate/putamen and nucleus accumbens (Sekine et al 2001).

Decision-making - Overview

- Decision-making:
 - The process of making choices or reaching conclusions.
- Comprises temporally and functionally distinct processes:
 - (1) the assessment and formation of preferences among possible options
 - (2) the selection and execution of an action
 - (3) the experience or evaluation of an outcome

Decision Making Factors

- Decision-making:
 - Person has to select among several options
 - Each option can be associated with positive or negative outcomes, which may be uncertain.
 - Key elements of decision situations:
 - Probability of an outcome associated with an option
 - Positive versus negative consequence
 - Magnitude of the consequence
 - The time delay between the action selection and the consequence

Decision-making & Methamphetamine

- Amphetamine abusers show
 - Suboptimal decisions (correlated with years of abuse)
 - Deliberated for significantly longer before making their choices (Rogers et al 1999)
- MA subjects are more influenced by the immediately preceding outcome (Paulus et al 2002)
- Decision-making by MA individuals is characterized by a rigid stimulus-response relationship:
 - Shift from processing "success" toward processing the degree of stimulus "predictability." (Paulus et al 2003)
Relapse

- An important public health problem
- Predicting relapse may help to deliver targeted interventions to those individuals at risk
- Current methods to predict relapse have
 - Low specificity (many false positives)
 - Moderate sensitivity (frequent false negatives)

Study Goals

- Neurobiology of decision-making dysfunctions in stimulant dependent subjects.
- Can functional magnetic resonance imaging be used as a tool to predict relapse?

Subjects

- 46 methamphetamine dependent subjects sober for a median of 25 days
- 6 lost to follow up
- 40 subjects followed up a median of 370 days
- NO RELAPSE: 22
- RELAPSE: 18
- 279 days median sober time

Functional Magnetic Resonance Imaging

- Magnetic resonance imaging
- Behavioral task
- Changes in blood oxygenation
- Identify brain areas involved in task-related processing
Assessment Protocol

Baseline Assessment:
- Diagnostic: SCID
- Symptom: BPRS / HDRS / YMRS
- Neuropsychology: DKEFS
- Decision-making: Two-choice Prediction task, Iowa Gambling Task

fMRI:
- Block Design: Two-choice Prediction Task versus Two-choice Response Task

Subjects’ Socio-demographics

<table>
<thead>
<tr>
<th></th>
<th>Non-relapsers</th>
<th>Relapsers</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>22</td>
<td>18</td>
</tr>
<tr>
<td>Age (years)</td>
<td>40.3 ± 8.8</td>
<td>41.9 ± 9.0</td>
</tr>
<tr>
<td>Race/Ethnicity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caucasian</td>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td>Other</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>Marital Status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Married</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Divorced/Separated</td>
<td>17</td>
<td>10</td>
</tr>
<tr>
<td>Never Married</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Education (years)</td>
<td>12.9 ± 1.2</td>
<td>13.5 ± 1.0</td>
</tr>
</tbody>
</table>

Subjects’ Use Characteristics

<table>
<thead>
<tr>
<th>Use Characteristics</th>
<th>Non-relapsers</th>
<th>Relapsers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Years of use</td>
<td>14.9 ± 10.0</td>
<td>17.3 ± 8.0</td>
</tr>
<tr>
<td>Sober days before imaging</td>
<td>27.4 ± 8.3</td>
<td>27.8 ± 11.0</td>
</tr>
<tr>
<td>Current Alcohol / Marijuana abuse</td>
<td>5 ± 7</td>
<td></td>
</tr>
<tr>
<td>Follow up characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Follow up duration [days]</td>
<td>437 ± 165</td>
<td>440 ± 304</td>
</tr>
<tr>
<td>Marijuana use during follow up [n]</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Cocaine use during follow up [n]</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Symptom Ratings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDRS 21</td>
<td>7.1 ± 7.8</td>
<td>10.2 ± 7.6</td>
</tr>
<tr>
<td>BPRS</td>
<td>27.3 ± 7.9</td>
<td>30.4 ± 6.8</td>
</tr>
<tr>
<td>YMRS</td>
<td>1.7 ± 2.7</td>
<td>5.4 ± 6.9</td>
</tr>
</tbody>
</table>

Brain Activation: Choice Versus Response Task

Brain Activation Graph

> <
Brain Activation and Relapse

Prediction Accuracy

<table>
<thead>
<tr>
<th>Region</th>
<th>Non-Relapsers</th>
<th>Relapsers</th>
</tr>
</thead>
<tbody>
<tr>
<td>R Insula</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R Middle Frontal Gyrus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R Middle Frontal Gyrus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R Middle Temporal Gyrus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R Inferior Parietal Lobule</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L Cingulate Gyrus</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

% Signal Difference

Summary & Conclusions

• Functional magnetic resonance imaging results predict relapse.

• Relapse = less activation in structures that are critical for decision-making

• Poor decision-making: “setting the stage” for relapse

Prediction Accuracy

<table>
<thead>
<tr>
<th></th>
<th>Relapse</th>
</tr>
</thead>
<tbody>
<tr>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>NO</td>
<td></td>
</tr>
</tbody>
</table>

N (40 after a median of 370 days)

Correctly Predicted by Imaging

<table>
<thead>
<tr>
<th></th>
<th>Sensitivity 94.4%</th>
<th>Specificity 86.4%</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Thanks

• Support from:

See also: http://koso.ucsd.edu/~martin/index.html