Pharmaco-fMRI: a New Clinical Tool to Discover Anxiolytic Drugs

Martin P Paulus, M.D.
Department of Psychiatry
University of California San Diego
La Jolla CA 92097-0603

Outline
1. Pharmaco-fMRI – where does it fit in?
2. What is fMRI and what it is not?
3. Biomarkers in anxiety
4. Pharmaco-fMRI studies
 - Lorazepam and emotional face processing
 - Lorazepam and risk-taking
5. fMRI study with high trait anxious subjects
6. Future directions

What Is the Problem?
• Anxiety disorders
 - Most common class of mental disorder
 - Point prevalence ~ 10%
• There are several promising drug classes
 - CRH-1 antagonists
 - Mglur2/3 and Mglur5 antagonists
 - NK1 antagonists
• But:
 - Big time lag:
 • From discovery to the demonstration of anxiolytic efficacy
 • Many failed compounds after many $ spent
What Is the Wish?

• To find shortcuts to drug development
• There is a huge leap of faith moving from phase I to phase II for anxiety
 - Drug shows some promise in preclinical anxiety models
 - Pick least toxic compound from platform
 - Administer to 500+ people in RCT
 • Dosing often uncertain
 • Clinical indications uncertain (which disorder?)
 • Failure likely

Then and Now:
The Different World of Drug Development

OLD: NEW:

We Need New Approaches

• U.S. Food and Drug Administration:
 - Mismatch between advancement in applied sciences (drug development) and basic sciences.
 - Need for new clinical endpoints.
• Pipeline problem:
 - “Our pipeline is rich with drugs that are unprecedented targets in unprecedented pathways”
 - But:
 • fewer innovative drugs move into development
 • fewer new drug applications
 • fewer innovative drugs approved each year.
What is Pharmaco-fMRI?

- Combine:
 - Human pharmacology
 - Magnetic Resonance Imaging
 - Blood Oxygen Level Dependent (BOLD) Contrast
 - Behavioral Tasks
 - Target Brain Structures

What Is fMRI (in 4 Steps)?

Step 1

- Protons when placed in a magnetic field
 - Align with the magnetic field
 - Flip between low and high energy states
- RF (radio frequency) pulses tip the net magnetization out of alignment
 - Signal: T2 - the rate of decay of the signal (out of alignment) back into alignment

What Is fMRI? - Step 2

- Hemodynamic activity is closely linked to neural activity
- When nerve cells are active, they consume oxygen supplied by local capillaries
- Hemoglobin is
 - Diamagnetic (weak form of magnetism) when oxygenated
 - Paramagnetic when deoxygenated
What Is fMRI? – Step 3

- The blood oxygen level dependent effect (BOLD) is complex
- Brain activation
 - ↑↑↑ Cerebral blood flow
 - ↑ Oxygen extraction
- Temporal delay of 4-6 seconds to the neural response
- The hemodynamic response lasts 12-16 seconds

What Is fMRI? – Step 4

- Where does the BOLD effect come from?
 - Expenditure of energy - restoration of ion gradients
 - Pumping sodium against the IC/EC gradient needs external energy
 - BOLD effect - excitatory synaptic activity
 - Glutamate opens sodium channels

What does fMRI measure?

- Subject perform different types of "tasks"
- MRI images are acquired continuously.
- Changes in blood oxygenation alter the image intensity in areas of the brain that are "involved in the task".
The Basic Premise Underlying Pharmaco-fMRI:

- Psychiatric disorders:
 - Brain disorders with altered metabolism in different brain structures.
- Treatments:
 - Affect neural metabolism by changing the firing rate of specific cells in different brain structures.
- Target processes:
 - Cognitive, affective or subjective/experiential processes related to the psychiatric disorder of interest.

What Can Pharmaco-fMRI Do?

- It can show:
 1. where in the brain a compound acts
 2. at what dose one observes changes in the brain
 3. whether a novel compound affects the brain similar to well-known therapeutics
- It cannot:
 1. Provide chemical specificity
 2. Differentiate which biological factors contribute to the brain change

Pharmaco-fMRI Versus PET

- Pharmaco-fMRI:
 - Can be used multiple times
 - Is available at many sites
 - Less expensive than PET (≈ 25 k / subject)
 - No ligands or radioactivity necessary
- But
 - No receptor specificity
 - Results from both neural and vascular effects
Where can Pharmaco-fMRI be useful?

- Phase I - Safety Studies
- Phase II - Clinical Trials

Proof of Principle Studies

Pharmaco-fMRI Study Protocols

- Depends on the question:
 - Acute protocol with
 - Healthy volunteers
 - Disorder population
 - Subchronic protocol
 - Healthy volunteers
 - Disorder population

Drug discovery and fMRI
Steps: fMRI Biomarker for Anxiety

- Identify brain areas
- Identify paradigms
- Anxiolytics should:
 - Alter fMRI BOLD in hypothesized brain areas
 - Magnitude of effect should correlate with anxiety changes
- Identify dose-response function
- Demonstrate effect size advantage over gold standard (current: rating scales)

Predictive Validity

Idealized scatterplot of ΔBOLD and Δanxiety responses with treatment for a critical task contrast in a key brain region (e.g., amygdala). Drugs which fall in the upper right quadrant would be predicted to have anxiolytic efficacy at those dose(s).

Characteristics: Behavioral Paradigm

- Behavioral effect sensitive to anxiety
- No ceiling / floor effects
- Repeatable
- Simple
- Sensitive to pharmacological manipulations
- Activates relevant brain areas
- Behavioral effects correlate with levels of anxiety
- Imaging effects correlate with anxiety
Anxiety – What to Target?

- What are measurable targets for behavior and fMRI?

- Anxiety: a future oriented cognitive and emotional state/trait characteristic
 - Anxious apprehension and worry
 - Affective/behavioral conflict
 - Altered approach/avoidance behaviors
 - Hyperarousal

Behavioral Targets for Anxiety

<table>
<thead>
<tr>
<th>Paradigm</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambiguity/Uncertainty processing:</td>
<td></td>
</tr>
<tr>
<td>Attentional bias paradigms (Mathews et al., 1989)</td>
<td>Ambiguous Face Classification (Richards et al., 2002)</td>
</tr>
<tr>
<td>Attentional distractor paradigms (Mathews et al., 1990)</td>
<td>Ambiguous events task (Hamann et al., 2009)</td>
</tr>
<tr>
<td>Continuous Performance Test (Ballard, 1996)</td>
<td>Emotional events task (Shanyashin et al., 2001)</td>
</tr>
<tr>
<td>Anterior cingulate cortex task (Raison et al., 2003)</td>
<td>Decision making task (Wager et al., 2004)</td>
</tr>
<tr>
<td>Memory recall task (Reidy & Richards, 1997)</td>
<td></td>
</tr>
<tr>
<td>Decision-making:</td>
<td></td>
</tr>
<tr>
<td>Interference Working Memory task (Calvo & Eysenck, 1996)</td>
<td>Gambling task (Aftanas et al., 1996)</td>
</tr>
<tr>
<td>Gambling task (Aftanas et al., 1996)</td>
<td></td>
</tr>
<tr>
<td>Behavioral control:</td>
<td></td>
</tr>
<tr>
<td>Risk-taking decision-making (Schmitt et al., 1999)</td>
<td>Emotion or Face processing:</td>
</tr>
<tr>
<td>Fear conditioning (Elliott et al., 2000)</td>
<td></td>
</tr>
<tr>
<td>Emotional go/no-go task (Elliott et al., 2000)</td>
<td></td>
</tr>
<tr>
<td>Implicit or explicit Emotion or Face processing:</td>
<td></td>
</tr>
<tr>
<td>Real/imagined conflict exposure:</td>
<td></td>
</tr>
<tr>
<td>Probe detection task (Mogg et al., 1995; Bradley et al., 1997)</td>
<td></td>
</tr>
<tr>
<td>Simulated public speaking (Fabere et al., 1998)</td>
<td></td>
</tr>
<tr>
<td>Public Speaking Task (Dumontier-Bois et al., 2002)</td>
<td></td>
</tr>
<tr>
<td>Viewing standardized pictures (Fabere et al., 1998)</td>
<td></td>
</tr>
<tr>
<td>Viewing standardized pictures (Lang et al., 2000)</td>
<td></td>
</tr>
<tr>
<td>Viewing standardized pictures (Kang et al., 2002)</td>
<td></td>
</tr>
<tr>
<td>Other:</td>
<td></td>
</tr>
<tr>
<td>Directed imagery of neutral, moderate and high anxiety situations (Bystritsky et al., 2001)</td>
<td></td>
</tr>
<tr>
<td>Directed imagery of neutral, moderate and high anxiety situations (Bystritsky et al., 2001)</td>
<td></td>
</tr>
<tr>
<td>Implicit association task (Egloff & Schmukle, 2002)</td>
<td></td>
</tr>
<tr>
<td>Anticipation of electroshocks (Boucsein & Wendt-Suhl, 1976)</td>
<td></td>
</tr>
<tr>
<td>Anticipation of electroshocks (Reiman et al., 1989)</td>
<td></td>
</tr>
<tr>
<td>Conditioned Tasks (Schneider et al., 1999)</td>
<td></td>
</tr>
<tr>
<td>Avoidance control paradigm (Wright, 1984)</td>
<td></td>
</tr>
</tbody>
</table>

Anxiety Circuitry

- Amygdala
- Insula
- Medial Prefrontal Cortex

Brain Activation

<table>
<thead>
<tr>
<th>% BOLD Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7</td>
</tr>
<tr>
<td>0.5</td>
</tr>
<tr>
<td>0.3</td>
</tr>
<tr>
<td>0.1</td>
</tr>
<tr>
<td>0.0</td>
</tr>
<tr>
<td>-0.1</td>
</tr>
<tr>
<td>-0.3</td>
</tr>
<tr>
<td>-0.5</td>
</tr>
<tr>
<td>-0.7</td>
</tr>
<tr>
<td>Dose</td>
</tr>
</tbody>
</table>

Anxiety Circuitry

- Amygdala
- Insula
- Medial Prefrontal Cortex
Our Targets

• Emotional face processing

• **Anticipation** of aversive visual stimuli

• Risk-taking decision-making (conflict)

Lorazepam Study

• Goal - to show that the extended anxiety circuitry (amygdala, insula, medial prefrontal cortex):
 - Responds to a particular behavioral paradigm
 - Shows predictable changes to a standard benzodiazepine at anxiolytic doses
 - Demonstrates dose-dependency.

Paulus MP et al., Arch Gen Psychiatry 2005

Methods: Subjects

• Fifteen healthy, non-smoking, individuals.
• 6 females, 9 males
• aged 18-39 years (mean 27.6 +/- 1.4 years)
• 12-18 years of education (mean 15.6 +/- 0.3 years)
• Recruited via general advertisement in local newspapers.

Paulus MP et al., Arch Gen Psychiatry 2005
Procedures

- Acute, double-blinded administration of lorazepam or placebo
- Three conditions in randomized order between 1-3 weeks apart
- Subjects arrived at the MRI facility 60-90 minutes prior to the MRI scan
- Subjects received orally placebo, 0.25 mg or 1.0 mg lorazepam suspension mixed in diet, decaffeinated cola

Paulus MP et al., Arch Gen Psychiatry 2005

Emotion Face Assessment Task

- Based on Hariri et al. 2002
- Decide:
 - which bottom face matches the emotion expressed by the top face
 - 5-second trials
 - Presentation of angry, fearful, and happy target faces (Matsumoto & Ekman 1998)

Paulus MP et al., Arch Gen Psychiatry 2005

Scanning / Processing

- 1.5-Tesla Siemens (Erlangen, Germany) scanner
- T2*-weighted echo planar imaging:
 - TR = 2000 ms, TE = 40 ms, 64 x 64 matrix, 20 4-mm axial slices, 256 repetitions)
- T1-weighted image
- Structural and functional image processing: Analysis of Functional Neuroimages software package (AFNI) package.

Paulus MP et al., Arch Gen Psychiatry 2005
fMRI Analysis

- Four orthogonal regressors
 - (1) happy, (2) angry, (3) fearful, (4) circle/oval sensorimotor condition
- Additional regressors:
 - residual motion (roll, pitch, and yaw), baseline and linear trend
- A priori regions of interest:
 - bilateral amygdala, medial prefrontal cortex, primary visual cortex and insula.

Paulus MP et al., Arch Gen Psychiatry 2005

Results: Behavioral Ratings

- Lorazepam - no effect on level of anxiety
- No effect of lorazepam on:
 - Tension, trembling, other psychomotor symptoms
- Increased sleepiness after 1.0 mg lorazepam

Paulus MP et al., Arch Gen Psychiatry 2005

Results: Task Performance

- **Accuracy**: 97% +/- 0.7:
 - Not affected by 0.25 mg or 1.0 mg lorazepam
- **Latency**: longer for matching angry or fearful faces relative to happy faces and circles or squares.
 - Not affected by lorazepam

Paulus MP et al., Arch Gen Psychiatry 2005
Results: fMRI - Amygdala

- BOLD-fMRI signal in amygdala:
 - 1.0 mg lorazepam < 0.25 mg
 - 1.0 mg lorazepam < placebo.
 - No significant difference between placebo and 0.25 mg lorazepam

Results: Insula

- BOLD-fMRI signal in insula:
 - 1.0 mg lorazepam < 0.25 mg
 - 1.0 mg lorazepam < placebo.
 - No significant difference between placebo and 0.25 mg lorazepam

Results: Visual Cortex

- No significant effect of lorazepam on the activation in bilateral visual cortex for placebo or the two doses of lorazepam
Summary of Lorazepam fMRI Study

• Lorazepam, a known anxiolytic dose-dependently attenuates the task-induced activation in bilateral amygdala and insula but has no effect in the visual cortex.
• BOLD-fMRI studies can provide robust data to determine the site of action of putative anxiolytics.
• First evidence of a dose-dependent change induced by an established therapeutic agent in brain regions known to be critical for the mediation of anxiety.

Risk and Decision-making

• Risk-taking occurs within the framework of the decision-making
 – selecting an option that is associated with a potential loss, danger, or other aversive consequence.
• Subjective versus objective definitions of risk
 – ratings of preferences or behavioral patterns.
 – experimental parameter.

Risky Gains Decision-making

• Decide between:
 – A sure gain of 20 points
 – A risky gain of 40 or 80 points
 – Probability of punishment for 40 or 80 trials are such that there is no advantage of selecting the risky versus the safe option.
Lorazepam - Behavioral Effects

- No significant change in Frequency of Risky Responses (with or without prior punishment)

BOLD fMRI Effects – Response Selection Phase

- Dose-dependent attenuation in left amygdala and medial prefrontal cortex.

BOLD fMRI Effects – Outcome Phase

- Dose dependent attenuation in bilateral insular cortex and right amygdala
Summary

• Lorazepam did not affect risky behavior at the doses tested
• Lorazepam dose-dependently attenuated activation:
 – In the amygdala and medial prefrontal cortex during the response selection phase
 – In the bilateral insular cortex and amygdala during the outcome phase

HTA – Amygdala Processing

• Goal - to show that the extended anxiety circuitry (amygdala, insula, medial prefrontal cortex):
 – Is sensitive to levels of anxiety
 – Is hyper-responsive in subjects with high trait anxiety

Anxiety Proneness

• Why Anxiety Prone?
 – Non-treatment seeking
 – Not treated
 – Subthreshold cases
 – High risk for future anxiety disorders
• Subjects recruited from San Diego State University
• Subjects comprised of two groups
 – Anxiety Prone (AP)
 – Non Anxiety Prone (NAP)
Results: fMRI - Amygdala

- **HTA**
 - Similar activation in medial
 - Increased activation in dorsal amygdala

- **Hariri: HTA versus NTA**
 -0.2
 -0.1
 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

Angry - Oval Fear - Oval Happy - Oval Angry - Oval Fear - Oval Happy - Oval

Right Amygdala Left Amygdala

Activation Area

% Signal Difference

NTA

HTA

Results: fMRI - Insula

- **HTA:**
 - Greater activation in bilateral anterior insula
 - Effect regardless of face type
 - Significant correlation between anterior insula and anxiety sensitivity (ASI)

- **Spielberger Trait Anxiety**
 -70.060.050.040.030.0
 - Insula: Angry - Oval

 0.40
 0.20
 0.00
 -0.20
 -0.40
 -0.60
 -0.80 Rsq = 0.3214

- **Spielberger State Anxiety**
 -80.070.060.050.040.030.020.0
 - Insula: Angry - Oval

 0.40
 0.20
 0.00
 -0.20
 -0.40
 -0.60
 -0.80 Rsq = 0.0909

Results: fMRI – visual cortex

- **HTA**
 - No significant activation differences in fusiform gyrus or visual cortex.
Summary / Conclusion: HTA Study

- Individuals with high trait anxiety
 - exaggerated response in bilateral amygdala and anterior insula.
- Direct evidence that the combination of this task and BOLD-fMRI can detect
 - Attenuation with an anxiolytic
 - Increase with high trait anxiety in important target areas for anxiety processing.

The Road Ahead

- fMRI and behavioral paradigms:
 - Promising biomarkers for psychiatric disorders
 - Need a comprehensive screen of various fMRI/behavioral task paradigms as candidates
 - Need more rigorous pharmacofMRI studies
 - Establish utility of pharmacofMRI assay with established anxiolytic compounds
 - Demonstrate consistent within-class effects
 - Demonstrate across-class effects
 - Study new anxiolytic compound
 - PharmacofMRI in 20 subjects as part of Phase 1.5
 - Proceed to RCT
 - Learn about predictive utility...

Where Does fMRI Fit in?

- fMRI:
 - Does the drug get into the brain?
 - Where does it act?
 - Does it generate a profile similar to those of standard anxiolytics?
 - Is there a new indication of an existing drug?
Many Thanks Go To

- Murray B. Stein, M.D. M.P.H.
- Alan N. Simmons, Ph.D.
- Justin S. Feinstein
- Gabriel Castillo
- Thuy Le
- Kelly Winternheimer

- This work was supported by:
 - NIMH MH65413 (MBS)
 - GSK (MPP)

- For more information go to:
 http://koso.ucsd.edu/~martin/